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Let’s Encrypt Apache Tomcat*

* Tomcat will not actually be encrypted.



  

Apache Tomcat

● Java Web Application Server
● Implements J2EE API Specifications

– Java Servlet
– Java ServerPages (JSP)
– Java Expression Language (EL)
– Java WebSocket



  

Apache Tomcat

● Provides Services
– Java Naming and Directory Interface (JNDI)
– JDBC DataSource, Mail Session via JNDI

● Provides Client Connectivity
– HTTP, AJP
– HTTPS using SSL/TLS



  

Why Encrypt

● Security for services that need security
– Obvious

● Security for users of sites that do not need security
– Not so obvious
– MitM is easy
– MitM = pwned
– https://www.troyhunt.com/heres-why-your-static-website-needs-https/

https://www.troyhunt.com/heres-why-your-static-website-needs-https/


  

Transport Layer Security (TLS)

● Formerly known as “Secure Sockets Layer”
● Provides authenticated and confidential conversations

– Client and server can authenticate each other
– Conversation is encrypted



  

Transport Layer Security

● Client and server negotiate a “cipher suite”
– Protocol (e.g. TLSv1, TLSv1.2, TLSv1.3, etc.)
– Authentication (e.g. X.509 with RSA/DSA or EC)
– Key exchange (e.g. RSA, DHE, ECDHE, etc.)
– Bulk encryption algorithm (e.g. AES, 3DES, CHACHA20, etc.)
– Message authentication code (e.g. SHA-1, SHA-2, etc.)



  

Public Key Infrastructure

● Delegated Trust Model
– Server produces certificate
– Server authenticates to Certificate Authority (CA)
– Certificate Authority signs Server’s certificate
– Server presents CA-signed certificate to client when a client initiates 

a connection
– Client trusts the Certificate Authority
– Client therefore trusts Server
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Public Key Infrastructure

● Certificate Authorities
– Have nearly universal (client) trust
– Provide multiple levels of authentication

● Domain-Validated (DV)
● Organization-Validated (OV)
● Extended Validation (EV)

– Require human interaction for requests, issuance
– Issue certificates for several years
– Charge a fee for a issuance



  

Let’s Encrypt

● Wanted widespread TLS
– Free
– Easy
– Makes the Web a safer place

● Questioned CA’s
– Signing-request and issuance processes
– Fees for freely-available crypto

● Built a better mousetrap



  

Let’s Encrypt

● Near-universal trust
– Cross-signed certificate from IdenTrust (an existing CA)
– Most browsers and OSs now include LE root certs

● Provides a single level of authentication
– Domain-Validated

● Requires automated interaction for requests, issuance
● Issues certificates valid for 90-day intervals
● Charges no fee for issuance



  

Let’s Encrypt

● Not replacing CAs
– No Organization-Validation or Extended-Validation certificates
– No code- or email-signing certificates

● Merely reduces the financial barrier for mundane TLS to zero



  

The Plan

● Once
– Request a certificate from Let’s Encrypt

● Periodically (~50 day intervals)
– Request a certificate renewal
– Deploy the new certificate into Tomcat



  

The Plan

● Request a certificate from Let’s Encrypt
– Easy: use EFF’s certbot tool

● Periodically request a renewal
– Easy: Use cron + EFF’s certbot tool

● Install the new certificate into Tomcat
– Not straightforward



  

Tomcat Troubles

● Tomcat usually doesn’t bind to port 80
– Might be tricky to renew certificates

● Tomcat uses Keystores
– certbot produces plain-old PEM files

● Tomcat’s “graceful reload” isn’t super convenient
– httpd has this, and certbot uses it



  

Tomcat Solutions

● Port binding
– jsvc
– iptables

● Java Keystores
– Can import PEM files

● Tomcat reloads
– Can be done
– Without downtime
– In-process requests will complete



  

Getting that first LE Cert

● iptables
– More than just a firewall
– Can perform routing and forwarding
– Need a few commands to redirect port 80 → 8080



  

Getting that first LE Cert

● iptables magic sauce
– NAT PREROUTING 80 → 8080
– NAT OUTPUT 8080 → 80
– NAT PREROUTING 443 → 8443
– NAT OUTPUT 8443 → 443
– Also may require:
– FILTER FORWARD 80 ACCEPT
– FILTER FORWARD 443 ACCEPT



  

Getting that first LE Cert

● iptables magic sauce
– HTTP

● iptables -t nat -A PREROUTING -p tcp -m tcp --dport 80 -j REDIRECT --to-ports 
8080

● iptables -t nat -A OUTPUT -o lo -p tcp -m tcp --dport 80 -j REDIRECT --to-ports 
8080

– HTTPS
● iptables -t nat -A PREROUTING -p tcp -m tcp --dport 443 -j REDIRECT --to-ports 

8443
● iptables -t nat -A OUTPUT -o lo -p tcp -m tcp --dport 443 -j REDIRECT --to-ports 

8443



  

Getting that first LE Cert

● iptables magic sauce
– Also might need

● iptables -A FORWARD -p tcp -m tcp –dport 80 -j ACCEPT
● iptables -A FORWARD -p tcp -m tcp –dport 443 -j ACCEPT



  

Getting that first LE Cert

● Now we can run certbot-auto to get a new certificate
– certbot-auto certonly --webroot \

--webroot-path “${CATALINA_BASE}/webapps/ROOT” \
-d www.example.com \
--rsa-key-size 4096



  

Reconfiguring Tomcat’s TLS

● Start with self-signed certificates

– keytool -genkeypair \
-keystore conf/keystore.p12.1 \
-storetype PKCS12 \
-alias tomcat -keyalg RSA \
-sigalg SHA256withRSA \
-keysize 4096 -validity 10

– Hostname: localhost
– Organizational Unit: Keystore #1



  

Reconfiguring Tomcat’s TLS

● Generate a second keystore

– keytool -genkeypair \
-keystore conf/keystore.p12.2 \
-storetype PKCS12 \
-alias tomcat -keyalg RSA \
-sigalg SHA256withRSA \
-keysize 4096 -validity 10

– Hostname: localhost
– Organizational Unit: Keystore #2



  

Reconfiguring Tomcat’s TLS

● Symlink conf/keystore.p12.1 → conf/keystore.p12
● Configure the connector in Tomcat

– <Connector port=”8443” keystoreFile=”conf/keystore.p12” … />

● Start Tomcat
● Verify connection

– openssl s_client -no_ssl3 -connect localhost:8443
– openssl s_client -no_ssl3 -connect localhost:443



  

Reconfiguring Tomcat’s TLS

● Remove existing symlink
● Symlink conf/keystore.p12.2 → conf/keystore.p12
● Now what?



  

Reconfiguring Tomcat’s TLS

● Tomcat
– Exposes ProtocolHandlers via JMX

● ProtocolHandlers via JMX
– reloadSslHostConfigs
– … in Tomcat 8.5.32+
– … or Tomcat 9.0.??



  

Reconfiguring Tomcat’s TLS

● Connect to Tomcat via JMX
● Navigate to the proper

ProtocolHandler
● Invoke the

reloadHostConfigs operation
● Verify Connection

– openssl s_client -no_ssl3 -connect localhost:443



  

Reconfiguring Tomcat’s TLS

● Manual Deployment
– Inconvenient (VisualVM in production?)
– Time-consuming
– Required with irritating frequency 

● every few weeks
● for every server

– Doesn’t scale



  

Reconfiguring Tomcat’s TLS

● Automation is Required
1. Renew certificate from Let’s Encrypt (certbot)

2. Build a new keystore (openssl)

3. Reload Tomcat’s Keystore



  

Let’s Encrypt Renewals

● Invoke certbot-auto renew
● Celebrate!



  

Build a new Keystore

● Package server key and certificate into PKCS#12 file
– openssl pkcs12 -export -in [cert] -inkey [key] -certfile [chain] -out 

[p12file]

● Celebrate!



  

Reload Tomcat’s Keystore

● Tomcat Manager to the Rescue
– JMXProxyServlet

● Enable Manager Application
– Need to configure a <Realm>

● Security!



  

Reload Tomcat’s Keystore

● Invoke reload method
– curl https://localhost/manager/jmxproxy?invoke=Catalina%3Atype

%3DProtocolHandler%2Cport%3D8443%2Caddress%3D
%22127.0.0.1%22&op=reloadSslHostConfigs

● Celebrate



  

Automated Deployment

● Scripting* will set you free
– certbot-auto renew
– openssl pkcs12 -export -in [cert] -inkey [key] -certfile [chain] -out 

[p12file]
– curl https://localhost/manager/jmxproxy?invoke=Catalina%3Atype

%3DProtocolHandler%2Cport%3D8443%2Caddress%3D
%22127.0.0.1%22&op=reloadSslHostConfigs

* The actual script has a lot more detail that won’t fit here.



  

Bonuses

● Allows CRL reloading (if you like that kind of thing)
● Allows on-the-fly TLS reconfiguration

– Protocols
– Cipher suites

● Allows additional certificates to be added (e.g. EC)
– … anything else encapsulated by the SSL engine



  

Bonuses

● Will work for all connector types
– NIO/NIO2
– APR



  

Let’s Encrypt Apache Tomcat

● Let’s Encrypt provides free (beer) certificates
● Automation is required for issuance and renewal
● Tomcat is somewhat more complicated than e.g. httpd
● Those complications can be overcome



Questions

https://people.apache.org/~schultz/ApacheCon NA 2019/Let's Encrypt Apache Tomcat.pdf
Sample code available in the same directory.
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