
 https://people.apache.org/~schultz/ApacheCon NA 2019/Let's Encrypt Apache Tomcat.pdf

Christopher Schultz
Total Child Health, Inc.

ASF Member, Tomcat PMC, Security Team

Let’s Encrypt Apache Tomcat*

* Tomcat will not actually be encrypted.

Apache Tomcat

● Java Web Application Server
● Implements J2EE API Specifications

– Java Servlet
– Java ServerPages (JSP)
– Java Expression Language (EL)
– Java WebSocket

Apache Tomcat

● Provides Services
– Java Naming and Directory Interface (JNDI)
– JDBC DataSource, Mail Session via JNDI

● Provides Client Connectivity
– HTTP, AJP
– HTTPS using SSL/TLS

Why Encrypt

● Security for services that need security
– Obvious

● Security for users of sites that do not need security
– Not so obvious
– MitM is easy
– MitM = pwned
– https://www.troyhunt.com/heres-why-your-static-website-needs-https/

https://www.troyhunt.com/heres-why-your-static-website-needs-https/

Transport Layer Security (TLS)

● Formerly known as “Secure Sockets Layer”
● Provides authenticated and confidential conversations

– Client and server can authenticate each other
– Conversation is encrypted

Transport Layer Security

● Client and server negotiate a “cipher suite”
– Protocol (e.g. TLSv1, TLSv1.2, TLSv1.3, etc.)
– Authentication (e.g. X.509 with RSA/DSA or EC)
– Key exchange (e.g. RSA, DHE, ECDHE, etc.)
– Bulk encryption algorithm (e.g. AES, 3DES, CHACHA20, etc.)
– Message authentication code (e.g. SHA-1, SHA-2, etc.)

Public Key Infrastructure

● Delegated Trust Model
– Server produces certificate
– Server authenticates to Certificate Authority (CA)
– Certificate Authority signs Server’s certificate
– Server presents CA-signed certificate to client when a client initiates

a connection
– Client trusts the Certificate Authority
– Client therefore trusts Server

Public Key Infrastructure

Client

Trusts
(Inherits
Trust)

CA Web Server
Trusts

CA Cert Server Cert
Signs

Public Key Infrastructure

● Certificate Authorities
– Have nearly universal (client) trust
– Provide multiple levels of authentication

● Domain-Validated (DV)
● Organization-Validated (OV)
● Extended Validation (EV)

– Require human interaction for requests, issuance
– Issue certificates for several years
– Charge a fee for a issuance

Let’s Encrypt

● Wanted widespread TLS
– Free
– Easy
– Makes the Web a safer place

● Questioned CA’s
– Signing-request and issuance processes
– Fees for freely-available crypto

● Built a better mousetrap

Let’s Encrypt

● Near-universal trust
– Cross-signed certificate from IdenTrust (an existing CA)
– Most browsers and OSs now include LE root certs

● Provides a single level of authentication
– Domain-Validated

● Requires automated interaction for requests, issuance
● Issues certificates valid for 90-day intervals
● Charges no fee for issuance

Let’s Encrypt

● Not replacing CAs
– No Organization-Validation or Extended-Validation certificates
– No code- or email-signing certificates

● Merely reduces the financial barrier for mundane TLS to zero

The Plan

● Once
– Request a certificate from Let’s Encrypt

● Periodically (~50 day intervals)
– Request a certificate renewal
– Deploy the new certificate into Tomcat

The Plan

● Request a certificate from Let’s Encrypt
– Easy: use EFF’s certbot tool

● Periodically request a renewal
– Easy: Use cron + EFF’s certbot tool

● Install the new certificate into Tomcat
– Not straightforward

Tomcat Troubles

● Tomcat usually doesn’t bind to port 80
– Might be tricky to renew certificates

● Tomcat uses Keystores
– certbot produces plain-old PEM files

● Tomcat’s “graceful reload” isn’t super convenient
– httpd has this, and certbot uses it

Tomcat Solutions

● Port binding
– jsvc
– iptables

● Java Keystores
– Can import PEM files

● Tomcat reloads
– Can be done
– Without downtime
– In-process requests will complete

Getting that first LE Cert

● iptables
– More than just a firewall
– Can perform routing and forwarding
– Need a few commands to redirect port 80 → 8080

Getting that first LE Cert

● iptables magic sauce
– NAT PREROUTING 80 → 8080
– NAT OUTPUT 8080 → 80
– NAT PREROUTING 443 → 8443
– NAT OUTPUT 8443 → 443
– Also may require:
– FILTER FORWARD 80 ACCEPT
– FILTER FORWARD 443 ACCEPT

Getting that first LE Cert

● iptables magic sauce
– HTTP

● iptables -t nat -A PREROUTING -p tcp -m tcp --dport 80 -j REDIRECT --to-ports
8080

● iptables -t nat -A OUTPUT -o lo -p tcp -m tcp --dport 80 -j REDIRECT --to-ports
8080

– HTTPS
● iptables -t nat -A PREROUTING -p tcp -m tcp --dport 443 -j REDIRECT --to-ports

8443
● iptables -t nat -A OUTPUT -o lo -p tcp -m tcp --dport 443 -j REDIRECT --to-ports

8443

Getting that first LE Cert

● iptables magic sauce
– Also might need

● iptables -A FORWARD -p tcp -m tcp –dport 80 -j ACCEPT
● iptables -A FORWARD -p tcp -m tcp –dport 443 -j ACCEPT

Getting that first LE Cert

● Now we can run certbot-auto to get a new certificate
– certbot-auto certonly --webroot \

--webroot-path “${CATALINA_BASE}/webapps/ROOT” \
-d www.example.com \
--rsa-key-size 4096

Reconfiguring Tomcat’s TLS

● Start with self-signed certificates

– keytool -genkeypair \
-keystore conf/keystore.p12.1 \
-storetype PKCS12 \
-alias tomcat -keyalg RSA \
-sigalg SHA256withRSA \
-keysize 4096 -validity 10

– Hostname: localhost
– Organizational Unit: Keystore #1

Reconfiguring Tomcat’s TLS

● Generate a second keystore

– keytool -genkeypair \
-keystore conf/keystore.p12.2 \
-storetype PKCS12 \
-alias tomcat -keyalg RSA \
-sigalg SHA256withRSA \
-keysize 4096 -validity 10

– Hostname: localhost
– Organizational Unit: Keystore #2

Reconfiguring Tomcat’s TLS

● Symlink conf/keystore.p12.1 → conf/keystore.p12
● Configure the connector in Tomcat

– <Connector port=”8443” keystoreFile=”conf/keystore.p12” … />

● Start Tomcat
● Verify connection

– openssl s_client -no_ssl3 -connect localhost:8443
– openssl s_client -no_ssl3 -connect localhost:443

Reconfiguring Tomcat’s TLS

● Remove existing symlink
● Symlink conf/keystore.p12.2 → conf/keystore.p12
● Now what?

Reconfiguring Tomcat’s TLS

● Tomcat
– Exposes ProtocolHandlers via JMX

● ProtocolHandlers via JMX
– reloadSslHostConfigs
– … in Tomcat 8.5.32+
– … or Tomcat 9.0.??

Reconfiguring Tomcat’s TLS

● Connect to Tomcat via JMX
● Navigate to the proper

ProtocolHandler
● Invoke the

reloadHostConfigs operation
● Verify Connection

– openssl s_client -no_ssl3 -connect localhost:443

Reconfiguring Tomcat’s TLS

● Manual Deployment
– Inconvenient (VisualVM in production?)
– Time-consuming
– Required with irritating frequency

● every few weeks
● for every server

– Doesn’t scale

Reconfiguring Tomcat’s TLS

● Automation is Required
1. Renew certificate from Let’s Encrypt (certbot)

2. Build a new keystore (openssl)

3. Reload Tomcat’s Keystore

Let’s Encrypt Renewals

● Invoke certbot-auto renew
● Celebrate!

Build a new Keystore

● Package server key and certificate into PKCS#12 file
– openssl pkcs12 -export -in [cert] -inkey [key] -certfile [chain] -out

[p12file]

● Celebrate!

Reload Tomcat’s Keystore

● Tomcat Manager to the Rescue
– JMXProxyServlet

● Enable Manager Application
– Need to configure a <Realm>

● Security!

Reload Tomcat’s Keystore

● Invoke reload method
– curl https://localhost/manager/jmxproxy?invoke=Catalina%3Atype

%3DProtocolHandler%2Cport%3D8443%2Caddress%3D
%22127.0.0.1%22&op=reloadSslHostConfigs

● Celebrate

Automated Deployment

● Scripting* will set you free
– certbot-auto renew
– openssl pkcs12 -export -in [cert] -inkey [key] -certfile [chain] -out

[p12file]
– curl https://localhost/manager/jmxproxy?invoke=Catalina%3Atype

%3DProtocolHandler%2Cport%3D8443%2Caddress%3D
%22127.0.0.1%22&op=reloadSslHostConfigs

* The actual script has a lot more detail that won’t fit here.

Bonuses

● Allows CRL reloading (if you like that kind of thing)
● Allows on-the-fly TLS reconfiguration

– Protocols
– Cipher suites

● Allows additional certificates to be added (e.g. EC)
– … anything else encapsulated by the SSL engine

Bonuses

● Will work for all connector types
– NIO/NIO2
– APR

Let’s Encrypt Apache Tomcat

● Let’s Encrypt provides free (beer) certificates
● Automation is required for issuance and renewal
● Tomcat is somewhat more complicated than e.g. httpd
● Those complications can be overcome

Questions

https://people.apache.org/~schultz/ApacheCon NA 2019/Let's Encrypt Apache Tomcat.pdf
Sample code available in the same directory.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

