
Zihao RAO, Alibaba Cloud

Implement automatic observability of Tomcat applications
under GraalVM static compilation

CONTENTS

1. Background

2. Solution

3. Demonstration

4. Future works

Background

Challenges for modern Java applications

Slow
startup

High
memory
overhead

Lifecycle of Java applications: VM init, App init, warmup,
App active and shutdown:

Picture by: https://shipilev.net/talks/j1-Oct2011-21682-benchmarking.pdf

Lifecycle of Java apps

Introduction of GraalVM native image

Picture by: https://medium.com/graalvm/lightweight-cloud-native-java-applications-35d56bc45673

Compared to JVM-based
environments, GraalVM offers the
following advantages

Enhanced startup speed: By eliminating VM init, JIT,
and interpretation overhead, the startup time is
significantly reduced

Reduced memory overhead: By removing the memory
footprint associated with the VM and applying numerous
optimizations, memory usage is significantly reduced

Lifecycle of
Java apps

under
GraalVM

Improvements
of different
frameworks

.java Java code

Java bytecode

javac

Native Compile Run

Native
Image

JVM

Operating System

Comparation of JVM and native compilation

.class

GraalVM native image compilation process

Picture by: https://www.infoq.com/articles/native-java-graalvm/

Process of native compilation

The process of native compile:

Impacts of GraalVM on the Java Ecosystem

Dynamic Features: Dynamic class loading, reflection, dynamic proxies, JNI, and serialization are no longer fully supported

Platform Independence: Without the JVM and bytecode, the platform independence that is a hallmark of the Java platform is no longer available

Ecosystem Tools: The original Java ecosystem tools for monitoring, debugging, and Java Agents are ineffective without the JVM and bytecode

OTel Collector
Microservices

OTel Agent

Frontends & APIs

Databases

Impact of GraalVM in observability

Solution

With GraalVM, bytecode is no longer used. Therefore,
we aim to perform these enhancements during
compilation:

Idea to instrument under GraalVM

Java Agent work process:

java -javaagent:agent.jar -cp .
org.example.Main Agent

1. Register transformer for class C

preMain main load classes

2. Trigger
callback b. Load transformed C’

a. Transform class C to C’

3. Get C’

a. How to transform target classes before runtime?

b. How to load transformed classes before runtime?

Running Phase

Overall design

Implemented static instrumentation before runtime:

Pre Running Phase Static Compilation Phase

transformed
classes and configs Native

Image
Collect transformed class C’

b. Load transformed class C’a. Transform class C to C’

APP
C

C’

GraalVM
Agent support

Runtime Build

OTel Agent

Native support

Native image
agent

Running Phase

……

Transform and record classes

Implemented an interceptor in native image agent to collect transformed classes:

Pre Running Phase
Static

Compilation Phase

Collect transformed class C’

a. Transform class C to C’

APP
C

GraalVM

Agent support

Runtime

OTel Agent

Native support

Native image agent

1.JDK transformers

preMain adapter

preMain relevant config

Runtime generated classes

Transformed APP classes
C’

……

2.Class Isolation

InstrumentationImpl
#transform

1. How to avoid affecting GraalVM‘s
compilation behavior?

2. How to achieve class isolation?

How to apply Transformed Classes

Load transformed classes by -classpath and --module-path:

Static Compilation Phase Running Phase

APP
C

Transformed APP
classes

C’

Native
Image

Build

......

--module-path
patch

jar module

GraalVM

-classpath CC’

patch

b. Load transformed class C’

……

Pre Running
Phase

……

Demonstration

Demonstration

Experimental Result

Spring Boot Kafka Redis MySQL

Startup Speed
(JVM) 7.541s 11.323s 10.717s 8.116s

Memory Overhead
(JVM) 402MB 408MB 420MB 394MB

Startup Speed
(GraalVM) 0.117s（-98%） 0.168s（-98%） 0.152s（-98%） 0.119s（-98%）

Memory Overhead
(GraalVM) 96MB（-75%） 141MB（-65%） 128MB（-69%） 107MB（-73%）

Comparison of startup speed and memory overhead: JVM vs. GraalVM native image with Java Agent

32 vCPU/64 GiB/5 Mbps

Future works

Future works

In the future, we plan to focus on the following aspects:

1. Conduct comprehensive test cases over multiple signals(metrics, trace, logs, and etc).

2. Consolidate the pre-running phase and the native compilation phase into a unified

phase to ensure transformed classes are universally collected.

Thank you
Q&A

